论文标题
基于深度学习的空间用户映射超大的MIMO阵列
Deep Learning Based Spatial User Mapping on Extra Large MIMO Arrays
论文作者
论文摘要
在超大尺度的MIMO(XL-MIMO)系统中,天线阵列具有较大的物理大小,超出了传统MIMO系统的尺寸。由于具有较大的维度,因此在依靠常规优化工具时,XL-MIMO系统的优化导致具有过高复杂性的解决方案。在本文中,我们提出了一种基于机器学习的设计,以通过线性预处理的多用户设置的下行链路,其目标是每个用户选择有限的映射区域,即对用户包含波束形成能量的阵列的一小部分。我们将此选择称为空间用户映射(sum)。我们的解决方案依赖于使用深层卷积神经网络与分布式体系结构进行学习,该架构旨在管理大型系统维度。该体系结构包含每个用户一个网络,其中所有网络在沿数组沿着通道的特定非平稳属性并行运行。我们的结果表明,一旦训练了并行网络,它们提供了超过$ 80 \%$的实例的最佳总和解决方案,与使用最佳总和解决方案相比,与系统相比,可以忽略不计的总和利率损失,同时提供了一种无知的方法来重新考虑没有封闭形式解决方案的这些问题。
In an extra-large scale MIMO (XL-MIMO) system, the antenna arrays have a large physical size that goes beyond the dimensions in traditional MIMO systems. Because of this large dimensionality, the optimization of an XL-MIMO system leads to solutions with prohibitive complexity when relying on conventional optimization tools. In this paper, we propose a design based on machine learning for the downlink of a multi-user setting with linear pre-processing, where the goal is to select a limited mapping area per user, i.e. a small portion of the array that contains the beamforming energy to the user. We refer to this selection as spatial user mapping (SUM). Our solution relies on learning using deep convolutional neural networks with a distributed architecture that is built to manage the large system dimension. This architecture contains one network per user where all the networks work in parallel and exploit specific non-stationary properties of the channels along the array. Our results show that, once the parallel networks are trained, they provide the optimal SUM solution in more than $80\%$ of the instances, resulting in a negligible sum-rate loss compared to a system using the optimal SUM solution while providing an insightful approach to rethink these kinds of problems that have no closed-form solution.