论文标题
具有复发性神经网络和卷积自动编码器的对流主导系统的降低订购建模
Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
论文作者
论文摘要
非线性偏微分方程的维度降低的常见策略依赖于使用适当的正交分解(POD)来确定在此减少空间中发展动力学的降低的子空间和盖尔金投影。但是,以对流为主的PDEs用这种方法来表示很差,因为截断过程丢弃了时间演化期间高阶模式之间的重要相互作用。在这项研究中,我们证明了使用卷积自动编码器(CAE)进行编码,然后通过复发性神经网络缩短了空间时间的演变,从而有效地克服了这一局限性。我们证明,只有两个潜在空间尺寸的截断系统可以为具有非常低粘度的粘性汉堡方程重现急剧的冲击曲线,并且六维潜在空间可以重新创建Inviscid浅水方程的演变。此外,提出的框架通过将参数信息直接嵌入潜在空间以检测系统演化的趋势,将框架扩展到参数减少阶模型。我们的结果表明,与POD Galerkin技术相比,这些以对流为主的系统更适合CAE和经常性神经网络组合的低维编码和时间演变。
A common strategy for the dimensionality reduction of nonlinear partial differential equations relies on the use of the proper orthogonal decomposition (POD) to identify a reduced subspace and the Galerkin projection for evolving dynamics in this reduced space. However, advection-dominated PDEs are represented poorly by this methodology since the process of truncation discards important interactions between higher-order modes during time evolution. In this study, we demonstrate that an encoding using convolutional autoencoders (CAEs) followed by a reduced-space time evolution by recurrent neural networks overcomes this limitation effectively. We demonstrate that a truncated system of only two latent-space dimensions can reproduce a sharp advecting shock profile for the viscous Burgers equation with very low viscosities, and a six-dimensional latent space can recreate the evolution of the inviscid shallow water equations. Additionally, the proposed framework is extended to a parametric reduced-order model by directly embedding parametric information into the latent space to detect trends in system evolution. Our results show that these advection-dominated systems are more amenable to low-dimensional encoding and time evolution by a CAE and recurrent neural network combination than the POD Galerkin technique.