论文标题
$ \ mathbb {p}^3 $上的一维束带的新模量空间
New moduli spaces of one-dimensional sheaves on $\mathbb{P}^3$
论文作者
论文摘要
我们在$ \ mathbb {p}^n $上定义了一个“ Euler”稳定性条件的一维家族,该家族猜想以使Gieseker稳定性收敛到Gieseker稳定性。在这里,我们专注于$ {\ mathbb p}^3 $,首先识别具有双重tilt稳定性条件的欧拉稳定性条件,然后我们考虑一维绳索的模量,证明了一些渐近效果,墙壁的界限,对墙壁的界限,然后在$ 3的$ 3. $ 3 $ $ 3 $ $ 3 $ $ 3 $ 3 $ 3 $ 3.
We define a one-dimensional family of "Euler" stability conditions on $\mathbb{P}^n$ which are conjectured to converge to Gieseker stability for coherent sheaves. Here, we focus on ${\mathbb P}^3$, first identifying Euler stability conditions with double-tilt stability conditions, and then we consider moduli of one-dimensional sheaves, proving some asymptotic results, boundedness for walls, and then explicitly computing walls and wall-crossings for sheaves supported on rational curves of degrees $3$ and $4$.