论文标题
Franke-Gorini-Kossakowski-Lindblad-Sudarshan方程的指针的扰动算法
A Perturbation Algorithm for the Pointers of Franke-Gorini-Kossakowski-Lindblad-Sudarshan Equation
论文作者
论文摘要
本文专门研究基于Franke-Gorini-Kossakowski-Lindblad-Sudarshan(FGKLS)方程的开放量子系统行为,该方程涵盖了可以区分腐蚀的情况下的进化。我们专注于量子测量操作,该操作由开放系统的最终固定状态确定 - 所谓的指针。我们通过将FGKLS方程应用于渐近恒定密度矩阵来找到指针。在寻求指针时,如果我们将与环境的相互作用组件采用薄弱,我们已经能够提出一种扰动的计算方案。因此,可以用某种方式将Lindblad运算符用作扰动理论的扩展参数。对于非分类和退化的哈密顿量的情况,我们提出的计划不同。我们通过在外部磁场中自旋的量子谐波振荡器的特定示例来说明我们的方案。扰动算法的效率通过与精确溶液的比较来证明。
This paper is devoted to the study of behavior of open quantum systems consistently based on the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation which covers evolution in situations when decoherence can be distinguished. We focus on the quantum measurement operation which is determined by final stationary states of an open system - so called pointers. We find pointers by applying the FGKLS equation to asymptotically constant density matrix. In seeking pointers, we have been able to propose a perturbative scheme of calculation, if we take the interaction components with an environment to be weak. Thus, the Lindblad operators can be used in some way as expansion parameters for perturbation theory. The scheme we propose is different for the cases of non-degenerate and degenerate Hamiltonian. We illustrate our scheme by particular examples of quantum harmonic oscillator with spin in external magnetic field. The efficiency of the perturbation algorithm is demonstrated by its comparison with the exact solution.