论文标题

所有三角曲线的精制布里尔·纳特理​​论

Refined Brill-Noether theory for all trigonal curves

论文作者

Larson, Hannah K.

论文摘要

三角曲线提供了Brill-Noether特殊曲线的示例。 [9]的定理1.3表征了一般三角曲线的Brill-Noether理论和Brill-Noether裂片基因座的精制分层,该基因座的线条捆绑捆绑包,其向前推向$ \ Mathbb {p}^1 $具有指定的分布类型。本说明描述了所有三角曲线的精制分层。鉴于三角曲线的Maroni不变,我们确定了所有Brill-Noether分裂基因座的尺寸,并描述其不可减至的成分。当尺寸为正时,这些基因座是连接的,如果Maroni不变性为$ 0 $或$ 1 $,则它们是不可约的。

Trigonal curves provide an example of Brill-Noether special curves. Theorem 1.3 of [9] characterizes the Brill-Noether theory of general trigonal curves and the refined stratification by Brill-Noether splitting loci, which parametrize line bundles whose push forward to $\mathbb{P}^1$ has a specified splitting type. This note describes the refined stratification for all trigonal curves. Given the Maroni invariant of a trigonal curve, we determine the dimensions of all Brill-Noether splitting loci and describe their irreducible components. When the dimension is positive, these loci are connected, and if furthermore the Maroni invariant is $0$ or $1$, they are irreducible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源