论文标题

随机磁各向异性驱动的过渡,分层钙钛矿lasrcoo $ _4 $

Random magnetic anisotropy driven transitions in layered perovskite LaSrCoO$_4$

论文作者

Ahad, Abdul, Gautam, K., Majid, S. S., Dey, K., Tripathy, A., Rahman, F., Choudhary, R. J., Sankar, R., Sinha, A. K., Kaul, S. N., Shukla, D. K.

论文摘要

尝试揭开Lasrcoo $ _4 $(CO $^{3+} $)中磁性订购的性质,一种化合物中间的反铁磁性(AFM)LA $ _2 $ _2 $ COO $ _4 $(CO $^{2+} $)和Ferromagnetic(Feromagnetic(Feromagnetic(Feromagnetic))$ _2 $ $ _2 $ _2到目前为止取得了有限的成功。在本报告中,单相拉斯科$ _4 $对DC磁化和AC敏感性(AC)进行了彻底研究的结果,为热力学progaragnetic(PM) - 铁磁性(FM) - t $ _ {c} $ = 220.5 k)的弯曲证据(PM) - Feromagnetic(fm)to $ = 220.5 k)。簇自旋玻璃(CSG)状态。在t $ _ {c} $附近的关键区域的低场Arott图等温线的分析,就状态的Aharony-Pytte缩放方程而言,明确表明,PM-FM过渡基本上是由随机磁各向异性(RMA)驱动的。对于低于$ \ $ 30 K的温度,足够大的RMA通过将无限的FM网络分解为有限尺寸的FM FM网络,从而破坏了远程FM订单,并通过在随机的方向上促进有限的FM Clusters的冻结,从而导致温度t $ \ lyssim $ 8 K形成CSG状态。采用温度降低的单离子磁晶各向异性(以及RMA)的强度提高,以反映出低旋转(LS)CO $^{3+} $离子的数量增加,而牺牲了高旋转(HS)CO $^{3+} $ ions。在中等温度(30 K $ \ Lessim t \ Lessim $ 180 K)下,自旋动力学具有无限FM网络的贡献(由单个各向异性能量屏障控制的快速放松)和有限的FM簇(由于层次障碍物而引起的极较慢的扩展张力放松)。

Attempts to unravel the nature of magnetic ordering in LaSrCoO$_4$ (Co$^{3+}$), a compound intermediate between antiferromagnetic (AFM) La$_2$CoO$_4$ (Co$^{2+}$) and ferromagnetic (FM) Sr$_2$CoO$_4$ (Co$^{4+}$), have met with a limited success so far. In this report, the results of a thorough investigation of dc magnetization and ac susceptibility (ACS) in single-phase LaSrCoO$_4$ provide clinching evidence for a thermodynamic paramagnetic (PM) - ferromagnetic (FM) phase transition at T$_{c}$ = 220.5 K, followed at lower temperature (T$_{g}$ = 7.7 K) by a transition to the cluster spin glass (CSG) state. Analysis of the low-field Arrott plot isotherms, in the critical region near T$_{c}$, in terms of the Aharony-Pytte scaling equation of state clearly establishes that the PM-FM transition is basically driven by random magnetic anisotropy (RMA). For temperatures below $\approx$ 30 K, large enough RMA destroys long-range FM order by breaking up the infinite FM network into FM clusters of finite size and leads to the formation of a CSG state at temperatures T $\lesssim$ 8 K by promoting freezing of finite FM clusters in random orientations. Increasing strength of the single-ion magnetocrystalline anisotropy (and hence RMA) with decreasing temperature is taken to reflect an increase in the number of low-spin (LS) Co$^{3+}$ ions at the expense of that of high-spin (HS) Co$^{3+}$ ions. At intermediate temperatures (30 K $\lesssim T \lesssim$ 180 K), spin dynamics has contributions from the infinite FM network (fast relaxation governed by a single anisotropy energy barrier) and finite FM clusters (extremely slow stretched exponential relaxation due to hierarchical energy barriers).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源