论文标题
更高的批评调整了虚弱和稀疏信号的回归
Higher Criticism Tuned Regression For Weak And Sparse Signals
论文作者
论文摘要
在这里,我们在高维惩罚回归方法中提出了一个新颖的搜索方案,以解决调整参数,以解决与数据维度相比,在样本量受到限制时解决变量选择和建模。我们的方法是由高通量生物学数据的动机,例如全基因组关联研究(GWAS)和全基因组关联研究(EWAS)。我们根据置信度$(1 -α)$的估计下限,提出了惩罚回归方法中正则化参数$λ$的新估计。通过应用较高批评统计量的经验无效分布来估算界限,这是使用多分数回归和聚合方法由依赖$ p $值构建的第二级显着性测试。惩罚回归中的调整参数估计值$λ$与虚假假设的比例的下限相对应。在多分数方法设置中比较了具有不同信号稀疏性和强度的不同惩罚回归方法。我们使用仿真实验和实际数据在(1)脂肪特征遗传学上的应用在糖尿病(ACCORC)临床试验中控制心血管风险的脂质特征遗传学以及(2)表观遗传分析评估吸烟在农业肺肺部健康研究中的差异甲基化中的影响。所提出的算法包含在HCTR软件包中,可在https://cran.r-project.org/web/packages/hctr/index.html上找到。
Here we propose a novel searching scheme for a tuning parameter in high-dimensional penalized regression methods to address variable selection and modeling when sample sizes are limited compared to the data dimensions. Our method is motivated by high-throughput biological data such as genome-wide association studies (GWAS) and epigenome-wide association studies (EWAS). We propose a new estimate of the regularization parameter $λ$ in penalized regression methods based on an estimated lower bound of the proportion of false null hypotheses with confidence $(1 - α)$. The bound is estimated by applying the empirical null distribution of the higher criticism statistic, a second-level significance test constructed by dependent $p$-values using a multi-split regression and aggregation method. A tuning parameter estimate in penalized regression, $λ$, corresponds with the lower bound of the proportion of false null hypotheses. Different penalized regression methods with varied signal sparsity and strength are compared in the multi-split method setting. We demonstrate the performance of our method using both simulation experiments and the applications of real data on (1) lipid-trait genetics from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial and (2) epigenetic analysis evaluating smoking's influence in differential methylation in the Agricultural Lung Health Study. The proposed algorithm is included in the HCTR package, available at https://cran.r-project.org/web/packages/HCTR/index.html.