论文标题

刺穿预先品种的茎

Pierce stalks in preprimal varieties

论文作者

Vaggione, D., Botero, W. J. Zuluaga

论文摘要

一个代数$ \ Mathbf {p} $称为\ textit {preprimal},如果$ \ mathbf {p} $是有限的,而$ \ func {clo}(\ mathbf {p})$是最大克隆。 \ textit {preadimal品种}是由预元代数生成的变体。在罗森伯格(Rosenberg)对最大克隆的分类之后\ cite {ro};当且仅当其术语操作完全是保留以下七种类型之一的关系时,我们就有一个有限代数是预先摄取的: 1。循环的排列所有相同的质量长度, 2。适当的子集, 3个主要恋爱关系, 4。有限的部分订单, 5。$ h $ - 亚种关系, 6。中央关系$ h \ geq 2 $, 7。适当的,非平凡的对等关系。 在\ cite {kn} knoebel中研究了不同的预杂种品种的刺穿,他要求对皮尔斯茎的描述。他解决了案例1.,2。和3。剩下的案件。在本文中,使用中心元素理论,我们成功地描述了病例6和7的刺穿。

An algebra $\mathbf{P}$ is called \textit{preprimal} if $\mathbf{P}$ is finite and $\func{Clo}(\mathbf{P})$ is a maximal clone. A \textit{preprimal variety} is a variety generated by a preprimal algebra. After Rosenberg's classification of maximal clones \cite{ro}; we have that a finite algebra is preprimal if and only if its term operations are exactly the functions preserving a relation of one of the following seven types: 1. Permutations with cycles all the same prime length, 2. Proper subsets, 3 Prime-affine relations, 4. Bounded partial orders, 5. $h$-adic relations, 6. Central relations $h\geq 2$, 7. Proper, non-trivial equivalence relations. In \cite{kn} Knoebel studies the Pierce sheaf of the different preprimal varieties and he asks for a description of the Pierce stalks. He solves this problem for the cases 1.,2. and 3. and left open the remaining cases. In this paper, using central element theory we succeeded in describing the Pierce stalks of the cases 6. and 7..

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源