论文标题

PatchWorkWave:多物理/多尺度/多帧/多途径模拟的多个多物理基础架构按任意顺序进行

PatchworkWave: A Multipatch Infrastructure for Multiphysics/Multiscale/Multiframe/Multimethod Simulations at Arbitrary Order

论文作者

Bowen, Dennis B., Avara, Mark, Mewes, Vassilios, Zlochower, Yosef, Noble, Scott C., Campanelli, Manuela, Shiokawa, Hotaka, Cheng, Roseanne M., Krolik, Julian H.

论文摘要

我们提供了PatchWorkMHD代码[1]的扩展名,本身就是PATCHWORK CODE [2]的MHD能力扩展,此处介绍的几种算法是共同开发的。其目的是创建一个与数值模拟在时空和时间上任何离散化顺序的任意运动方程式兼容的多捕捉方案。在拼布框架中,全局模拟由任意数量的移动,本地网格或补丁组成,这些移动,局部网格或补丁可以自由使用自己的分辨率,坐标系统/拓扑,物理方程,参考框架以及我们的新方法,数值方法。每个本地补丁都将边界数据与单个全局贴片交换,所有其他补丁都通过客户端路由器 - 服务器并行化模型驻留在其上。在将拼布与任意订单时间集成兼容时,PatchWorkMHD和PatchWorkWave通过删除原始Patchwork代码中存在的插值数据反馈的插值,从而显着提高了插入式插值精度。此外,我们通过允许同时更新多个状态向量来扩展拼凑为多方法,并且每个状态向量都提供自己的内部互动插值和转换过程。因此,我们的方案几乎与任何双曲线偏微分方程兼容。我们通过实现标量波玩具模型来证明我们的变化,该标量波玩具模型以第四阶精度以任意时间相关的贴片配置而进化。

We present an extension of the PatchworkMHD code [1], itself an MHD-capable extension of the Patchwork code [2], for which several algorithms presented here were co-developed. Its purpose is to create a multipatch scheme compatible with numerical simulations of arbitrary equations of motion at any discretization order in space and time. In the Patchwork framework, the global simulation is comprised of an arbitrary number of moving, local meshes, or patches, which are free to employ their own resolution, coordinate system/topology, physics equations, reference frame, and in our new approach, numerical method. Each local patch exchanges boundary data with a single global patch on which all other patches reside through a client-router-server parallelization model. In generalizing Patchwork to be compatible with arbitrary order time integration, PatchworkMHD and PatchworkWave have significantly improved the interpatch interpolation accuracy by removing an interpolation of interpolated data feedback present in the original Patchwork code. Furthermore, we extend Patchwork to be multimethod by allowing multiple state vectors to be updated simultaneously, with each state vector providing its own interpatch interpolation and transformation procedures. As such, our scheme is compatible with nearly any set of hyperbolic partial differential equations. We demonstrate our changes through the implementation of a scalar wave toy-model that is evolved on arbitrary, time dependent patch configurations at 4th order accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源