论文标题

最大多样性根对某些类别的延迟差分 - 代数系统的稳定性的影响:无损传播情况

Effects of Roots of Maximal Multiplicity on the Stability of Some Classes of Delay Differential-Algebraic Systems: The Lossless Propagation Case

论文作者

Mazanti, Guilherme, Boussaada, Islam, Niculescu, Silviu-Iulian, Chitour, Yacine

论文摘要

在最近的几项作品中已经观察到,对于某些类别的线性时间延迟系统,最大多样性的光谱值是主导的,一种被称为多重性诱导的义务(MID)的属性。本文通过考虑由两个标量方程组成的单延迟系统来开始研究中MID是否持有延迟差分 - 代数系统。在激发了这个问题并回顾了一些智障延迟微分方程的最新结果之后,我们证明了MID属性具有延迟差分 - 代数感兴趣的系统,并提出了一些应用。

It has been observed in several recent works that, for some classes of linear time-delay systems, spectral values of maximal multiplicity are dominant, a property known as multiplicity-induced-dominancy (MID). This paper starts the investigation of whether MID holds for delay differential-algebraic systems by considering a single-delay system composed of two scalar equations. After motivating this problem and recalling some recent results for retarded delay differential equations, we prove that the MID property holds for the delay differential-algebraic system of interest and present some applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源