论文标题
CRI $ _3 $ _3 $单层:巡回费用描述
Topological magnons in CrI$_3$ monolayers: an itinerant fermion description
论文作者
论文摘要
镁质主导了最近发现的绝缘铁磁二维晶体(例如CRI $ _3 $)的磁反应。由于CR旋转在蜂窝晶格中的排列,Cri $ _3 $中的木蛋白与石墨烯中的电子准颗粒具有很大相似之处。在散装cri $ _3 $中进行的中子散射实验显示了dirac点的差距,该差距已被认为具有拓扑性质。在这里,我们提出了基于流动费米的图片的铁磁性cri $ _3 $单层中的木魔理论,其汉密尔顿人源自第一原理。我们在两个山谷中的Dirac点具有相同的浆果曲率,并获得了2D CRI $ _3 $的木否分散液。对于CRI $ _3 $丝带,我们发现手性的间隙边缘状态。对镁波在动量空间中的作用的分析进一步证实了它们的拓扑性质。重要的是,我们的方法不需要定义自旋哈密顿量,并且可以应用于用任何类型的磁性磁性的隔热和传导2D材料。
Magnons dominate the magnetic response of the recently discovered insulating ferromagnetic two dimensional crystals such as CrI$_3$. Because of the arrangement of the Cr spins in a honeycomb lattice, magnons in CrI$_3$ bear a strong resemblance with electronic quasiparticles in graphene. Neutron scattering experiments carried out in bulk CrI$_3$ show the existence of a gap at the Dirac points, that has been conjectured to have a topological nature. Here we propose a theory for magnons in ferromagnetic CrI$_3$ monolayers based on an itinerant fermion picture, with a Hamiltonian derived from first principles. We obtain the magnon dispersion for 2D CrI$_3$ with a gap at the Dirac points with the same Berry curvature in both valleys. For CrI$_3$ ribbons, we find chiral in-gap edge states. Analysis of the magnon wave functions in momentum space further confirms their topological nature. Importantly, our approach does not require to define a spin Hamiltonian, and can be applied to both insulating and conducting 2D materials with any type of magnetic order.