论文标题

有限公制树的等距嵌入到$(\ mathbb {r}^n,d_ {1})$和$(\ mathbb {r}^n,d _ {\ infty})$

Isometric Embeddings of Finite Metric Trees into $(\mathbb{R}^n,d_{1})$ and $(\mathbb{R}^n,d_{\infty})$

论文作者

Aksoy, Asuman Güven, Kiliç, Mehmet, Koçak, Sahin

论文摘要

我们将有限公制树的等距嵌入到$(\ Mathbb {r}^n,d_ {1})$和$(\ Mathbb {r}^n,d _ {\ infty})$中。我们证明,当有限的公制树可以嵌入$(\ mathbb {r}^n,d_ {1})$时,仅当其叶子的数量最多为$ 2N $时。我们表明,最多有$ 2^n $叶子的有限星形树可以嵌入到$(\ Mathbb {r}^{n},d _ {\ infty})$和有限的公制树中,并具有$ 2^n $叶子超过$ 2^n $ sebs nosemetry嵌入$( d _ {\ infty})$。我们猜想,最多有$ 2^n $叶子的任意有限公制树可以将其嵌入$(\ mathbb {r}^{n},d _ {\ infty})$中。

We investigate isometric embeddings of finite metric trees into $(\mathbb{R}^n,d_{1})$ and $( \mathbb{R}^n, d_{\infty})$. We prove that a finite metric tree can be isometrically embedded into $(\mathbb{R}^n,d_{1})$ if and only if the number of its leaves is at most $2n$. We show that a finite star tree with at most $2^n$ leaves can be isometrically embedded into $(\mathbb{R}^{n}, d_{\infty})$ and a finite metric tree with more than $2^n$ leaves cannot be isometrically embedded into $(\mathbb{R}^{n}, d_{\infty})$. We conjecture that an arbitrary finite metric tree with at most $2^n$ leaves can be isometrically embedded into $(\mathbb{R}^{n}, d_{\infty})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源