论文标题

符号歧管和异构粒细胞变形

Symplectic Manifolds and Isomonodromic Deformations

论文作者

Boalch, Philip

论文摘要

我们研究了riemann表面上的Meromorthic连接的模量空间(带有任意阶杆),以及相应的单片数据(涉及Stokes矩阵)的空间。从无限的尺寸观点(将Atiyah-Bott方法推广)发现和描述了自然的符号结构。这使我们能够对Jimbo,Miwa和Ueno的异构粒度变形方程进行固有的符号描述,从而将六个Pachleve方程的现有结果和Schlesinger方程置于统一的框架中。

We study moduli spaces of meromorphic connections (with arbitrary order poles) over Riemann surfaces together with the corresponding spaces of monodromy data (involving Stokes matrices). Natural symplectic structures are found and described both explicitly and from an infinite dimensional viewpoint (generalising the Atiyah-Bott approach). This enables us to give an intrinsic symplectic description of the isomonodromic deformation equations of Jimbo, Miwa and Ueno, thereby putting the existing results for the six Painleve equations and Schlesinger's equations into a uniform framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源