论文标题
研究各种应变基质组的弹性常数
Investigating elastic constants across diverse strain-matrix sets
论文作者
论文摘要
弹性常数和机械性能在多个学科和工程应用中起关键作用。我们介绍了使用应力 - 应变方法来确定材料的二阶弹性常数(OHESS)的优化高效应变式摩atrix集(OHESS)。本文中,我们系统地研究了OHESS在各种晶体系统中的计算效率,并将其与其他值得注意的应力应变方法进行比较,例如单元素应变 - 矩阵集和通用线性无关的耦合菌株。值得注意的是,我们的数据肯定了正在考虑的菌株 - 马trix集合中OHESS的卓越功效。我们认为,OHESS将在确定弹性常数和机械性能方面显着提高计算效率,成为材料研究,设计和高通量筛选的必不可少的工具。
Elastic constants and mechanical properties play a pivotal role across multiple disciplines and engineering applications. We introduced the optimized high-efficient strain-matrix set (OHESS) that determines the second-order elastic constants of materials using the stress-strain method. Herein, we systematically investigate the computational efficiency of OHESS across a broad range of crystal systems and compare it with other notable stress-strain approaches, such as the single-element strain-matrix sets and the universal linear-independent coupling strains. Notably, our data affirm the superior efficacy of OHESS among the strain-matrix sets under consideration. We believe OHESS will markedly improve computational efficiency in determining the elastic constants and mechanical properties, becoming an indispensable tool for material research, design, and high-throughput screening.