论文标题

过滤器商和不可披露的$(\ infty,1)$ - popess

Filter Quotients and Non-Presentable $(\infty,1)$-Toposes

论文作者

Rasekh, Nima

论文摘要

我们定义了$(\ infty,1)$ - 类别的过滤器商,并证明过滤器保留基本$(\ infty,1)$ - topos的结构,尤其是抬起基础基本拓扑的过滤器商。然后,我们专门研究$(\ infty,1)$类别的过滤产品,并证明了过滤器产品中等价的表征定理。然后,我们使用过滤产品来构建一大类的基本$(\ infty,1)$ - poperses nothe othendieck $(\ infty,1)$ - possoses。此外,我们为有兴趣的读者提供了一个详细的示例,他们想看看我们如何构建这样的$(\ infty,1)$ - 类别,但宁愿避免有关过滤器的技术。

We define filter quotients of $(\infty,1)$-categories and prove that filter quotients preserve the structure of an elementary $(\infty,1)$-topos and in particular lift the filter quotient of the underlying elementary topos. We then specialize to the case of filter products of $(\infty,1)$-categories and prove a characterization theorem for equivalences in a filter product. Then we use filter products to construct a large class of elementary $(\infty,1)$-toposes that are not Grothendieck $(\infty,1)$-toposes. Moreover, we give one detailed example for the interested reader who would like to see how we can construct such an $(\infty,1)$-category, but would prefer to avoid the technicalities regarding filters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源