论文标题

复杂值连续功能的中间环

Intermediate rings of complex-valued continuous functions

论文作者

Acharyya, Amrita, Acharyya, Sudip Kumar, Bag, Sagarmoy, Sack, Joshua

论文摘要

令$σ(x,\ mathbb {c})$表示$ c^*(x,x,\ mathbb {c})$和$ c(x,x,\ mathbb {c})$之间的所有环的集合。我们表明,绝对凸理想/prime理想/最大理想/$ z $ -IDEALS/$ z^\ circ $ - iDeals in Rings $ p(x,x,\ mathbb {c})$ in $σ(x,x,x,mathbb {c})$和他们的real-courter-courter-courter-courter-courter-courter-courter-courter-courter-courter-courter-courter-courter-courter-courter-courterparts, $ p(x,\ mathbb {c})\ cap c(x)$。结果表明,任何此类$ p(x,\ mathbb {c})$的结构空间是$βx$。我们表明,对于任何最大的理想$ m $中的$ c(x,\ mathbb {c})),c(x,\ mathbb {c}})/m $是代数封闭的字段。我们为理想的$ c _ {\ mathcal {p}}(x,x,\ mathbb {c})$ $ c(x,x,\ mathbb {c})$提供了必要和充分的条件,使其成为一个理想的理想,我们在此后检查一些特殊情况。

Let $Σ(X,\mathbb{C})$ denote the collection of all the rings between $C^*(X,\mathbb{C})$ and $C(X,\mathbb{C})$. We show that there is a natural correlation between the absolutely convex ideals/ prime ideals/maximal ideals/$z$-ideals/$z^\circ$-ideals in the rings $P(X,\mathbb{C})$ in $Σ(X,\mathbb{C})$ and in their real-valued counterparts $P(X,\mathbb{C})\cap C(X)$. It is shown that the structure space of any such $P(X,\mathbb{C})$ is $βX$. We show that for any maximal ideal $M$ in $C(X,\mathbb{C}), C(X,\mathbb{C})/M$ is an algebraically closed field. We give a necessary and sufficient condition for the ideal $C_{\mathcal{P}}(X,\mathbb{C})$ of $C(X,\mathbb{C})$ to be a prime ideal, and we examine a few special cases thereafter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源