论文标题

具有六年的IceCube高能量级联数据的弥漫性天体物理电子和Tau中微子通量的特征

Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data

论文作者

IceCube Collaboration, Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Alispach, C., Andeen, K., Anderson, T., Ansseau, I., Anton, G., Argüelles, C., Auffenberg, J., Axani, S., Backes, P., Bagherpour, H., Bai, X., V., A. Balagopal, Barbano, A., Barwick, S. W., Bastian, B., Baum, V., Baur, S., Bay, R., Beatty, J. J., Becker, K. -H., Tjus, J. Becker, BenZvi, S., Berley, D., Bernardini, E., Besson, D. Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Bohm, C., Böser, S., Botner, O., Böttcher, J., Bourbeau, E., Bourbeau, J., Bradascio, F., Braun, J., Bron, S., Brostean-Kaiser, J., Burgman, A., Buscher, J., Busse, R. S., Carver, T., Chen, C., Cheung, E., Chirkin, D., Choi, S., Clark, K., Classen, L., Coleman, A., Collin, G. H., Conrad, J. M., Coppin, P., Correa, P., Cowen, D. F., Cross, R., Dave, P., De Clercq, C., DeLaunay, J. J., Dembinski, H., Deoskar, K., De Ridder, S., Desiati, P., de Vries, K. D., de Wasseige, G., de With, M., DeYoung, T., Diaz, A., Díaz-Vélez, J. C., Dujmovic, H., Dunkman, M., Dvorak, E., Eberhardt, B., Ehrhardt, T., Eller, P., Engel, R., Evenson, P. A., Fahey, S., Fazely, A. R., Felde, J., Filimonov, K., Finley, C., Fox, D., Franckowiak, A., Friedman, E., Fritz, A., Gaisser, T. K., Gallagher, J., Ganster, E., Garrappa, S., Gerhardt, L., Ghorbani, K., Glauch, T., Glüsenkamp, T., Goldschmidt, A., Gonzalez, J. G., Grant, D., Grégoire, T., Griffith, Z., Griswold, S., Günder, M., Gündüz, M., Haack, C., Hallgren, A., Halliday, R., Halve, L., Halzen, F., Hanson, K., Haungs, A., Hebecker, D., Heereman, D., Heix, P., Helbing, K., Hellauer, R., Henningsen, F., Hickford, S., Hignight, J., Hill, G. C., Hoffman, K. D., Hoffmann, R., Hoinka, T., Hokanson-Fasig, B., Hoshina, K., Huang, F., Huber, M., Huber, T., Hultqvist, K., Hünnefeld, M., Hussain, R., In, S., Iovine, N., Ishihara, A., Jansson, M., Japaridze, G. S., Jeong, M., Jero, K., Jones, B. J. P., Jonske, F., Joppe, R., Kang, D., Kang, W., Kappes, A., Kappesser, D., Karg, T., Karl, M., Karle, A., Katz, U., Kauer, M., Kelley, J. L., Kheirandish, A., Kim, J., Kintscher, T., Kiryluk, J., Kittler, T., Klein, S. R., Koirala, R., Kolanoski, H., Köpke, L., Kopper, C., Kopper, S., Koskinen, D. J., Kowalski, M., Krings, K., Krückl, G., Kulacz, N., Kurahashi, N., Kyriacou, A., Lanfranchi, J. L., Larson, M. J., Lauber, F., Lazar, J. P., Leonard, K., Lesiak-Bzdak, M., Leszczyńska, A., Leuermann, M., Liu, Q. R., Lohfink, E., Mariscal, C. J. Lozano, Lu, L., Lucarelli, F., Lünemann, J., Luszczak, W., Lyu, Y., Ma, W. Y., Madsen, J., Maggi, G., Mahn, K. B. M., Makino, Y., Mallik, P., Mallot, K., Mancina, S., Mari{ş}, I. C., Maruyama, R., Mase, K., Maunu, R., McNally, F., Meagher, K., Medici, M., Medina, A., Meier, M., Meighen-Berger, S., Merino, G., Meures, T., Micallef, J., Mockler, D., Momenté, G., Montaruli, T., Moore, R. W., Morse, R., Moulai, M., Muth, P., Nagai, R., Naumann, U., Neer, G., Niederhausen, H., Nisa, M. U., Nowicki, S. C., Nygren, D. R., Pollmann, A. Obertacke, Oehler, M., Olivas, A., O'Murchadha, A., O'Sullivan, E., Palczewski, T., Pandya, H., Pankova, D. V., Park, N., Peiffer, P., Heros, C. Pérez de los, Philippen, S., Pieloth, D., Pinat, E., Pizzuto, A., Plum, M., Porcelli, A., Price, P. B., Przybylski, G. T., Raab, C., Raissi, A., Rameez, M., Rauch, L., Rawlins, K., Rea, I. C., Rehman, A., Reimann, R., Relethford, B., Renschler, M., Renzi, G., Resconi, E., Rhode, W., Richman, M., Robertson, S., Rongen, M., Rott, C., Ruhe, T., Ryckbosch, D., Rysewyk, D., Safa, I., Herrera, S. E. Sanchez, Sandrock, A., Sandroos, J., Santander, M., Sarkar, S., Sarkar, S., Satalecka, K., Schaufel, M., Schieler, H., Schlunder, P., Schmidt, T., Schneider, A., Schneider, J., Schröder, F. G., Schumacher, L., Sclafani, S., Seckel, D., Seunarine, S., Shefali, S., Silva, M., Snihur, R., Soedingrekso, J., Soldin, D., Song, M., Spiczak, G. M., Spiering, C., Stachurska, J., Stamatikos, M., Stanev, T., Stein, R., Stettner, J., Steuer, A., Stezelberger, T., Stokstad, R. G., Stößl, A., Strotjohann, N. L., Stürwald, T., Stuttard, T., Sullivan, G. W., Taboada, I., Tenholt, F., Ter-Antonyan, S., Terliuk, A., Tilav, S., Tollefson, K., Tomankova, L., Tönnis, C., Toscano, S., Tosi, D., Trettin, A., Tselengidou, M., Tung, C. F., Turcati, A., Turcotte, R., Turley, C. F., Ty, B., Unger, E., Elorrieta, M. A. Unland, Usner, M., Vandenbroucke, J., Van Driessche, W., van Eijk, D., van Eijndhoven, N., van Santen, J., Verpoest, S., Vraeghe, M., Walck, C., Wallace, A., Wallraff, M., Wandkowsky, N., Watson, T. B., Weaver, C., Weindl, A., Weiss, M. J., Weldert, J., Wendt, C., Werthebach, J., Whelan, B. J., Whitehorn, N., Wiebe, K., Wiebusch, C. H., Wille, L., Williams, D. R., Wills, L., Wolf, M., Wood, J., Wood, T. R., Woschnagg, K., Wrede, G., Xu, D. L., Xu, X. W., Xu, Y., Yanez, J. P., Yodh, G., Yoshida, S., Yuan, T., Zöcklein, M.

论文摘要

我们在2010年至2015年的Icecube数据中使用粒子淋浴(级联反弹)报告了天体中微子通量的首次测量。假设标准振荡,该专用级联样品中的天体中微子在Electron and tau flavors中以$ \ \ sim 90 \ sim 90 \ sim 90 \%)为主导。在敏感能量中观察到的通量范围从$ 16 \,\ mathrm {tev} $到$ 2.6 \,\ mathrm {pev} $,与单一的幂律模型一致,如Fermi-type从天体物理学源高能量颗粒的Fermi-Type加速所预期的。 We find the flux spectral index to be $γ=2.53\pm0.07$ and a flux normalization for each neutrino flavor of $ϕ_{astro} = 1.66^{+0.25}_{-0.27}$ at $E_{0} = 100\, \mathrm{TeV}$, in agreement with IceCube's complementary muon neutrino results and具有全中性风味的效果。在测得的能量范围内,我们拒绝频谱指数$γ\ leq2.28 $ in $ \ge3σ$显着性水平。由于中微子的高能分辨率和低大气中微子的背景,该分析提供了低于$ \ sim100 \,{\ rm {tev}} $的中微子通量最详细的表征。假设更复杂的中微子通量模型的拟合结果表明,在高能量下的通量软化,而在低能(p值$ \ ge 0.06 $)下加强度变化。 $ \ sim 100 \,{\ rm {tev}} $在$ \ sim 100 \以下测量的巨大而光滑的通量仍然是一个难题。为了不违反Fermi-Lat测量的各向同性弥漫性伽马射射线背景,它表明存在以密集的环境为特征的天体中微子来源,这些环境是密集的环境,对伽马射线不透明。

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated ($\sim 90 \%$) by electron and tau flavors. The flux, observed in the sensitive energy range from $16\,\mathrm{TeV}$ to $2.6\,\mathrm{PeV}$, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be $γ=2.53\pm0.07$ and a flux normalization for each neutrino flavor of $ϕ_{astro} = 1.66^{+0.25}_{-0.27}$ at $E_{0} = 100\, \mathrm{TeV}$, in agreement with IceCube's complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices $γ\leq2.28$ at $\ge3σ$ significance level. Due to high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below $\sim100\,{\rm{TeV}}$ compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value $\ge 0.06$). The sizable and smooth flux measured below $\sim 100\,{\rm{TeV}}$ remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi-LAT, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma-rays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源