论文标题
拉格朗日二元性,以限制深度学习
Lagrangian Duality for Constrained Deep Learning
论文作者
论文摘要
本文探讨了拉格朗日二元性对具有复杂限制的学习应用的潜力。这种限制在许多科学和工程领域都产生,其中任务等于学习优化问题,必须反复解决,并包括硬物理和操作限制。该论文还考虑了学习任务必须对预测变量实施约束本身的应用程序,要么是因为它们是函数学习的自然属性,要么是因为从社会角度来看是可以强加于这些的。本文在实验上证明了拉格朗日二元性为这些应用带来了重大好处。在能源域中,可以使用拉格朗日二元性和深度学习的组合来获得最新的结果,以预测气体网络中能量系统和最佳压缩机设置的最佳功率流。在超反应计算中,拉格朗日二元性可以补充深度学习,以在预测因子上施加单调性约束而不牺牲准确性。最后,拉格朗日二元性可用于在预测因子上执行公平性约束,并在最大程度地减少不同治疗方法时获得最先进的结果。
This paper explores the potential of Lagrangian duality for learning applications that feature complex constraints. Such constraints arise in many science and engineering domains, where the task amounts to learning optimization problems which must be solved repeatedly and include hard physical and operational constraints. The paper also considers applications where the learning task must enforce constraints on the predictor itself, either because they are natural properties of the function to learn or because it is desirable from a societal standpoint to impose them. This paper demonstrates experimentally that Lagrangian duality brings significant benefits for these applications. In energy domains, the combination of Lagrangian duality and deep learning can be used to obtain state-of-the-art results to predict optimal power flows, in energy systems, and optimal compressor settings, in gas networks. In transprecision computing, Lagrangian duality can complement deep learning to impose monotonicity constraints on the predictor without sacrificing accuracy. Finally, Lagrangian duality can be used to enforce fairness constraints on a predictor and obtain state-of-the-art results when minimizing disparate treatments.