论文标题

关于复杂的hyperbolic kleinian组的注释

A note on complex-hyperbolic Kleinian groups

论文作者

Dey, Subhadip, Kapovich, Michael

论文摘要

令$γ$为在复杂的双曲线$ n $ -space $ \ mathbb {h}^n_ \ mathbb {c} $上作用于复杂双曲线$ n $ -space $ \ space $ \ mathbb {c} $的异构体。在本说明中,我们证明,如果$γ$无扭转,无扭转,而关键指数$δ(γ)$严格低于$ 2 $,则复杂的歧管$ \ mathbb {h}^n_ \ mathbb {c}/γ$是Stein。我们还讨论了几种相关的猜想。

Let $Γ$ be a discrete group of isometries acting on the complex hyperbolic $n$-space $\mathbb{H}^n_\mathbb{C}$. In this note, we prove that if $Γ$ is convex-cocompact, torsion-free, and the critical exponent $δ(Γ)$ is strictly lesser than $2$, then the complex manifold $\mathbb{H}^n_\mathbb{C}/Γ$ is Stein. We also discuss several related conjectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源