论文标题

重力插入的共形和等距嵌入

Conformal and isometric embeddings of gravitational instantons

论文作者

Dunajski, Maciej, Tod, Paul

论文摘要

我们在$ \ mathbb {r}^8 $和$ \ mathbb {r}^7 $中构建了某些引力插入的等距和同型等距嵌入。特别是我们表明,爱因斯坦的嵌入类 - 由于烧伤而导致的墨西哥intsanton等于$ 3 $。对于$ \ mathbb {cp}^2 $,eguchi-hanson和反二重要的taub-nut,我们在嵌入式类中获得上和下限。

We construct isometric and conformally isometric embeddings of some gravitational instantons in $\mathbb{R}^8$ and $\mathbb{R}^7$. In particular we show that the embedding class of the Einstein--Maxwell instanton due to Burns is equal to $3$. For $\mathbb{CP}^2$, Eguchi--Hanson and anti-self-dual Taub-NUT we obtain upper and lower bounds on the embedding class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源